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various monosaccharides and stabilizes various ammonium-anion 
salts by the induced-fit mechanism or what may be called flexible 
intramolecular polar microsolvation, in a similar manner as solvent 
water dissolves various polar solutes. This may also be why 
noncyclic host 5 works fairly well too. Thus, versatility is an 
important aspect here.19 
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Hydrogen bonding is a fundamental force in molecular rec­
ognition by biological macromolecules. It is central to nucleic 
acid base-pairing, yet does not occur significantly between in­
dividual nucleotides or nucleic acid bases in aqueous solution.1 

Model systems generally require noncompetitive organic solvents, 
such as CDCl3, to achieve hydrogen bonding between uncharged 
receptors and substrates.2'3 Here, we report that self-assembling 
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Figure 1. Effect of SDS concentration on chemical shift of protons of 
thymine 4. Titrations were performed on a 300-MHz NMR instrument 
at 22 ± 1 0 C by addition of 1 M SDS solution to a 1.0 mM solution of 
4 in D2O (CH protons) or 10% H 2 0 / D 2 0 (NH proton, 1.0 mM HOAc 
added). HOD or H2O was used as a reference (S 4.65). 
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molecular receptors, comprising (thyminyloctyl)ammonium groups 
in sodium dodecyl sulfate (SDS) micelles, bind adenine derivatives 
by means of hydrogen bonding in aqueous solution.4 

The receptors (represented by structure 1) were prepared from 
thymine as shown in Scheme I.3b5 1H NMR studies indicate that 
ammonium salt 4, which is complementary in charge and structure 
to SDS, readily incorporates in SDS micelles (Figure 1). In­
creasing the SDS concentration from 0 to 20 mM results in large 
changes in the spectrum of 4, suggesting that the environment 
of 4 changes drastically as the SDS forms micelles (CMC = 8.2 
mM).6 Incorporation is complete above 20 mM SDS. On the 
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Figure 2. Chemical shift of thymine 4 NH vs number of equivalents of 
added adenine 5 in the presence (O) and absence (O) of 20.0 mM SDS. 
Line corresponds to the best-fit curve calculated for a 1:1 binding iso­
therm (K = 16.09 M'1, 5unbound = 10.682 ppm, i^^ = 11.552 ppm). 
Titrations were performed on a 500-MHz NMR instrument at 22 ± 1 
0C. H2O was used as a reference (5 4.65). 

basis of a reported mean aggregation number of 60 for SDS,7 the 
receptor should comprise about 3 molecules of 4 among 60 
molecules of SDS at 2OmM SDS and 1.0 mM 4. In the absence 
of SDS, ammonium salt 4 does not significantly self-associate in 
aqueous solution, exhibiting variations in chemical shift of less 
than 0.01 ppm over a concentration range of 0.5-25 mM. 

Receptor 1 binds adenine derivatives in aqueous solution. 
Binding studies were performed by 1H NMR titration of a solution 
of 1.0 mM 4, 20.0 mM SDS, and 1.0 mM AcOH (to reduce the 
rate of exchange of the thymine NH) in 10% D2O/H2O with a 
solution of 200 mM acetyladenine 5 and 20.0 mM SDS in 10% 
D 2 0 /H 2 0 . A 1331 pulse sequence8 provided water-suppression 
and permitted monitoring of the thymine NH resonance.9 

Substantial downfield shifts of the NH resonance occur upon 
addition of 5 (Figure 2) and are consistent with adenine-thymine 
base-pairing.10 In the absence of SDS, smaller upfield shifts occur, 
indicating that aromatic-stacking interactions predominate.111 

Analysis of the micelle data affords an excellent fit to a 1:1 binding 
model for the association of 4 and 5 and reveals an association 
constant of 16 M"1.12'13 

Our data support a model in which the micelles exclude bulk 
water from the hydrogen-bonding surface of the thymine group, 
thus providing a microenvironment suitable for binding.4 The 
binding constant in aqueous SDS (16 M"1) is smaller than that 
of 3 and 5 in CDCl3 (37 M"1),12 suggesting that the thymine group 
resides in an environment comparable to a polar organic solvent.14 
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1H NMR studies suggest that concentration of 5 inside the micelles 
may also contribute to binding.15 Thus, addition of 20 mM SDS 
to a solution of 5 in 10% D 2 0 /H 2 0 results in small (<0.02 ppm) 
shifts in the 1H NMR spectrum of 5. 

In summary, we have found that base-pairing of simple adenine 
and thymine derivatives occurs in micelles. We anticipate that 
the incorporation of hydrogen-bonding groups into micelles will 
prove a general strategy for the design of aqueous molecular 
receptors. 
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Laccase, a multicopper oxidase, catalyzes the irreversible 4-
electron reduction of dioxygen to water. The enzyme contains 
a blue (type 1,Tl) copper and a trinuclear copper cluster com­
prised of a normal (type 2, T2) copper and a binuclear (type 3, 
T3) copper center.1 Intermediates in the reaction of reduced 
enzyme with dioxygen have been detected in the native enzyme2 

and in a derivative, TlHg,3 where the Tl copper is replaced with 
redox-inactive Hg2+. The intermediate in TlHg has been shown 
to be a 2-electron peroxide intermediate, with the T3 oxidized and 
T2 reduced.4 Studies of the intermediate in native laccase have 
led to proposals that this intermediate is a 3-electron reduced 
oxygen radical.2 Evidence for this includes the rapid reappearance 
of absorption features at 614 and 330 nm, associated with oxidized 
Tl and T3, respectively, and lack of a T2 EPR signal.2b In 
addition, an EPR signal, attributed to the intermediate, is observed 
at helium temperature which exhibits a low g value and fast 
relaxation.5 17O line broadening of this signal indicates the direct 
involvement of oxygen.5 To elucidate this intermediate's structure 
we have employed magnetic circular dichroism (MCD) spec­
troscopy to probe its electronic properties. The appearance of 
intense MCD C-terms at 364 and 318 nm provides definitive 
evidence for the intermediate having significant Cu(II) character. 
In addition, the T3 site, diamagnetic in the resting enzyme due 
to antiferromagnetic coupling, is paramagnetic in the intermediate. 
An alternative description is presented for the electronic structure 
of this intermediate based on the MCD data. MCD spectroscopy6 

is found to be a powerful probe of paramagnetic intermediates 
in reaction mixtures. 
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